
Minits-AllOcc: An Efficient Algorithm for Mining Timed Sequential
Patterns

Somayah Karsoum1, Clark Barrus1, Le Gruenwald1, and Eleazar Leal2

1University of Oklahoma, Norman, OK 73019, USA

{somayah.karsoum, clark.barrus, ggruenwald}@ou.edu

2 University of Minnesota Duluth, Duluth, MN 55812, USA

eleal@d.umn.edu

Abstract. Sequential pattern mining aims to find the subsequences in a sequence database that appear together in the
order of timestamps. Although there exist sequential pattern mining techniques, they ignore the temporal relationship
information between the itemsets in the subsequences. This information is important in many real-world applications.
For example, even if healthcare providers know that symptom Y frequently occurs after symptom X, it is also valuable
for them to be able to estimate when Y would occur after X so that they can provide treatment at the right time.
Considering temporal relationship information for sequential pattern mining raises new issues to be solved such as
designing a new data structure to save this information and traversing this structure efficiently to discover patterns
without re-scanning the database. In this paper, we propose an algorithm called Minits-AllOcc (MINIng Timed
Sequential pattern for All-time Occurrences) to find sequential patterns and the transition time between itemsets based
on all possible occurrences of a pattern in the database. We also propose a parallel multicore CPU version of this
algorithm, called MMinits-AllOcc (Multicore Minits-AllOcc), to deal with Big Data. Extensive experiments on real
and synthetic datasets show the advantages of this approach over the brute-force method. Also, the multicore CPU
version of the algorithm is shown to outperform the single-core version on Big Data by 2.5X.

Keywords: Sequential pattern mining, Timed sequential pattern, Multicore, Parallel Sequential Pattern Mining.

1 Introduction

Sequential pattern mining [1] is a data mining task that discovers frequent subsequences in a sequence database of
time-ordered transactional data. Finding interesting, useful, and unexpected patterns is beneficial for a wide range of
real-world applications such as illness symptom pattern prediction [12], network intrusion detection [18], and
customer shopping behaviors [1]. Existing sequential pattern mining algorithms such as [22],[17], and [9] use implicit
timestamps to order the itemsets within a sequential pattern but the transition time between these itemsets is not kept.
In many applications, it is important to know the time to move from one itemset to another in the pattern. For example,
in healthcare applications, knowing when the next symptom of heart attack will occur assists healthcare providers in
forming diagnoses, providing treatments at the right time, and intervening earlier in critical cases. For monitoring
weather forecasts in Oklahoma during the tornado season, we want to be able to track the transition time range between
cities when a tornado hits multiple cities in the timestamp order. With sequential patterns that also contain the temporal
relationship about the transition time, which indicates when the next symptoms will appear, we are answering not only
a question like in which order the symptoms for heart attack frequently occur, but also questions like when the
symptoms for heart attack frequently occur.
Let us suppose that we have the historical health information of temperature (T) and blood pressure (BP) for patients
who have had a heart attack. The time is recorded when each of the measurements is taken for each patient. Since
sequential pattern mining algorithms do not deal with continuous data, we need to apply a discretization technique in
order to segment the data into classes that have similar features or fall within the same group. For instance, the blood
pressure (BP) has five levels [4]: (1) Normal (BP < 120), (2) Elevated (120 ≤ BP ≤ 129), (3) High Stage 1 (131 ≤
BP ≤ 139), (4) High Stage 2 (140 ≤ BP ≤ 180), and (5) Crisis (BP > 181). Therefore, we refer to the blood pressure
with the abbreviation BP followed by the class number in which the blood pressure falls. Since the temporal information
is available in time-ordered transactional data, we can discover more informative sequential patterns that not only show
the symptoms that frequently occur among patients but also include the typical transition times between symptoms (in
terms of number of weeks in our example). We call this special type of sequential patterns Timed Sequential Patterns
(TSP). For example, < {T1, BP3} [2,7] {T2}> is a TSP that has two itemsets: itemset 1 consisting of two items T1
and BP3, and itemset 2 consisting of item T2, Itemset 2 occurs within 2 to 7 weeks after itemset 1. In our notations,
all items enclosed within braces { } occur at the same time and constitute an itemset, and the square brackets []

indicates the time duration to move from one itemset to the next itemset. Thus, the previous example of TSP shows
that when patients have a temperature in class 1 (T1) and a blood pressure in class 3 (BP3), then within 2 to 7 weeks,
the patients will have a temperature in class 2 (T2). If we apply traditional sequential mining, then this pattern would
only be < {T1, BP3} {T2}> which does not include the transition time [2, 7].
Incorporating the temporal information in a sequential pattern raises additional challenges when compared to the regular
sequential pattern mining. First, while both sequential pattern mining and timed sequential pattern mining need to find
out whether a pattern occurs in a sequence database tuple, timed sequential pattern mining also needs to find out how
many times the pattern occurs in that tuple to compute the temporal relationship between the itemsets in the pattern. So,
to find all possible occurrence of the pattern; the naïve mechanism is required to scan each tuple in the database from
the beginning until the end. Unlike sequential pattern mining, an algorithm will stop checking the rest of the tuple in
the database as soon as the pattern is found. In other words, in the best case, sequential pattern mining techniques do
not need to check until the end of each sequence in the database. However, timed sequential pattern mining requires
checking all the sequences in the database. For example, if we have a tuple of a patient P1 in the database that has all
measurements within six months and usually the following symptoms occur many times in the patient's tuple: high
temperature followed by low blood pressure after some time. Since the timed sequential patterns mining problem wants
to know when the low blood pressure occurs, it is not sufficient to find only the first position of this pattern and report
the temporal relation. Instead, it is necessary to consider all possible occurrences of that pattern and also all the different
timestamps of each occurrence and find the temporal relation. Second, the temporal information must be updated for
each pattern that is discovered based on the timestamps of the tuples that contain the pattern. For example, after we
discover the pattern from the patient P1 and calculate the temporal relations, we also find the same pattern, high
temperature followed by low blood pressure, in another tuple for another patient Pi in the database. That means the
temporal relations need to be updated to represent the actual time duration. So, we need to capture all the occurrences
of that pattern for Pi and re-calculate the temporal relations. On top of that, we need to keep track of timestamps of all
occurrences of the patterns for both patients P1 and Pi to finalize the temporal relationships. The brute force technique
needs to scan the database again to retrieve or store the required information for P1. Thus, for every pattern, we need
to scan the whole database many times to make sure that we have the correct temporal relations. Of course, this requests
more space and time that obviously impacts the performance of any algorithm.
The existing techniques [3],[8], and [21], which will be discussed in detail in Section III, do not address these
challenges. To fill this gap, in this paper we propose a timed sequential pattern mining algorithm, called Minits-AllOcc
(MINIng Timed Sequential pattern for All-time Occurrences), that addresses all these challenges. We also validate the
proposed algorithm through a set of empirical experiments. The contributions of this paper are the following:
1. The idea of incorporating transition time between itemsets in a sequential pattern, which indicates all possible

time occurrences of the pattern within whole timed sequence database. The temporal relations required time to
move from one itemset to the next itemset in the timestamp order. The time can be any descriptive statistic based
on the user’s preference, such as range, average, etc.

2. The parallel implementation of the Minits-AllOcc algorithm and the extensive experiments comparing the single-
core vs. multi-core algorithms on real and synthetic datasets.

The remainder of this paper is organized as follows. Section 2 defines the timed sequential pattern mining problem.
Section 3 reviews the related works. Section 4 explains the proposed techniques for the Minits-AllOcc algorithm.
Section 5 presents the results of the experiments on the dataset. Finally, the conclusion and future work are presented
in Section 6.

2 Problem Definitions

In this section, we review the definitions of the sequential pattern mining problem and introduce new definitions for
the timed sequential pattern mining problem. Recalling the traditional sequential pattern mining problem [1], an
itemset I is a set of items such that I ⊆ X, where X = {x1, x2, . . . xl} is a set of items. A sequence (tuple) s is an
ordered list (based on timestamps) of itemsets. A sequence A = < {a1}, {a2}, …{an}> is contained in another sequence
B = < {b1}, {b2}, …{bm}> and B is super-sequence of A, if there exists a set of integers, 1≤ j1 < j2 <…< jn ≤ m such
that	 a! ⊆  𝑏"!

			 , 		a$ ⊆ 	 b""
			 , 	 … 	, a% ⊆ b"%.

A sequence database S is a set of sequences (tuples) <sid, si> where sid is a sequence identifier and si is a sequence.
A tuple <sid, si> is said to contain a sequence 𝛼, if 𝛼	is a subsequence of si. Since our problem considers the temporal
data too, we incorporate timestamps explicitly in the database and introduce new definitions.
Definition 1. A timed event is a pair e = (I, t) where I is an itemset that occurs at the timestamp t. We use e.I and e.t
to indicate, respectively, the itemset I and the timestamp t associated with the event e. The list of events that is sorted

in the timestamp order is called a timed sequence TS = <{e1}, {e2}, ..., {en}>, such that ei.x ⊆ I (1 ≤ i ≤ n). A timed
sequence database TSDB is a set of sequences < TS_id, TS>, where TS_id is a timed-sequence identifier and TS is a
timed sequence.
Example 1. (Running example) The timed sequence database in Fig. 1 is used as an illustrative example in this paper.
For simplicity, we will use letters to refer to items which represent different properties of objects in the database (e.g.,
temperature and blood pressure for patients), and integer numbers to refer to timestamps, which represent the times
when those properties are collected. In this example, there are four timed sequences with IDs from TS1 to TS4. Each
timed sequence consists of a set of events ordered in the events’ timestamps. For example, TS1 consists of two events:
the first event {a, b, 5}, which occurred at timestamp 5, followed by the second event {d, g, 12}, which occurred at
time stamp 12.
Definition 2. Given a sequence A = <{I1}, {I2}, …{In}> and a timed sequence TS = <{e!}, {e$}, … , {e&}>, the
All-time Occurrences of A in TS in the timed sequence database TSDB is defined as an ordered list of indices 1≤ j1 <
j2 < …< jn ≤ m such that: I! ⊆  e"!

			 . I, 		I$ ⊆ 	 e""
			 . I, 	 … 	I% ⊆ e"# . I. The deltas Δare defined as	Δ = e'."$%!

			 . t		 − 	 e)."$
			 . t.

Example 2. Let sequence A = <{a}{b}> and timed sequence TS4 = <{a,10},{b,f,19},{d,20},{b,30}>, as shown in
Fig. 1. The indices of the events for the first occurrence of sequence A in TS4 are {e1, e2} as the solid arrow is shown
in Fig. 2. The delta Δ is the difference between the timestamps of these two consecutive events, which is e1.t1 = 10 and
e2.t2 = 19. Thus, the Δ = 19 – 10 =9. Then, the second occurrence of sequence A in TS4, as the dotted arrow is shown
in Fig. 2, has the following events’ indices {e1, e4}. The delta Δ is the difference between the timestamps of these two
consecutive events, which is e1.t1 = 10 and e4.t2 = 30. Thus, the Δ = 30 – 10 =20. Similarly, we can find the rest of the
All-time Occurrence. The support of a sequence A in a sequence database, or a timed sequence database, is the
percentage of the number of sequences in the database that contains A such that sup(A) = (#sequences that contains
A / #sequences in DB)*100. If the support of sequence A is greater than or equal to a user defined threshold called
minimum support (min_sup), then it is called a sequential pattern [1].
Definition 3. A sequence A is called a timed sequential pattern TSP, if and only if it is a sequential pattern and
accompanied by temporal relationships 𝜏i between itemsets where it represents any descriptive statistic, such as
average of transition time or range, calculated based on values of delta Δ. TSP denoted as: TSP = < {I0} [𝜏1] {I1} [𝜏2]
{I2} …… [𝜏n] {In}>. For brevity, when we mention a pattern, we refer to a timed sequential pattern.
Example 3. Let us assume the min-sup =50%, since the support of sequence A= <{a}{b}> is 50%, the sequence is a
sequential pattern. In this paper, we assume that a user chooses the temporal relation to be presented as a range of time
[min, max]. Thus, the timed sequential pattern version is: <{a} [9,20] {b}>. Thus, the timed sequential patterns are
originally sequential patterns that satisfy the min_sup condition and clearly state the transition time between itemsets.

3 Related Works
The concept of sequential pattern mining was first introduced in [1], where three algorithms were proposed:
AprioriSome, DynamicSome, and AprioriAll algorithms for discovering sequential patterns. AprioriAll was the basis
of many other efficient algorithms that have been proposed to improve its performance. Those algorithms inspired [19]
to propose a technique to generate fewer candidates called GSP. Since all algorithms were based on the Apriori
algorithm, therefore, they were classified as Apriori-based algorithms. Other algorithms such as SPADE [22] adopted
a vertical id-list database format that reduced the number of database scans. In contrast, pattern-growth based
algorithms, such as FreeSpan [9] and PrefixSpan [17], used the concept of database projection, which made them more
efficient than other Apriori-based algorithms, especially when they dealt with a large database. These algorithms
generated a smaller database for their next pass because the sequence database was projected into a set of smaller
databases and then sequential patterns in each of them were explored. Thus, they were more efficient. More literature
reviews about the state-of-art sequential pattern mining algorithms can be found in [5].
Recently, with the existence of a large volume of data available in many applications, several sequential pattern mining
algorithms had been proposed to handle large databases consisting of huge amounts of sequences efficiently using

Fig. 1. An example of Timed Sequence Database

Fig. 2. All time Occurrence of A in TS2

different platforms. For example, [11] used the multi-core processor architecture for implementing pDBV-SPM to
improve processing speed for mining sequential patterns. Ha-GSP [16] adopted the principles of GSP and implemented
them on the Hadoop platform for solving the limited computing capacity and insufficient performance with massive
data of the traditional GSP. MR-PrefixSpan [20] used the MapReduce platform to implement the parallel version of
PrefixSpan to mine sequential patterns on a large database. More literature reviews about the state-of-art parallel
sequence mining algorithms are in [6].
In a sequential pattern, objects have an ordinal correlation based on the timestamp precedence. We can obtain a
sequence by sorting all these objects based on the order of their timestamps. However, the time between itemsets is
discarded. This kind of sequential pattern that incorporates temporal relations is more informative for some
applications. Some techniques were proposed to specify some timing constraints, such as the time gaps between
adjacent itemsets in sequential patterns. For example, [3] modified the Apriori [1] and PrefixSpan [17] algorithms to
discover the time-interval sequential patterns that satisfied the interval duration boundaries. The I-PrefixSpan
algorithm in [3] has another input which is called a set of time-intervals TI, where each time-interval has a range. [10]
extend the work of [3] and proposed two algorithms: MI-Apriori and MI-Prefix. The time- intervals incorporated in
the patterns revealed the time between all pairs of items in a pattern, which is called multi-time-interval sequential
patterns. A list of intervals (ti3, ti2, ti1) before item d in a pattern like <a, ti1,b,(ti2,ti1),c,(ti3,ti2,ti1),d> means the intervals
between items a, b, and c and item d are ti3, ti2 and ti1, respectively. [2] also extracted the sequential patterns of diseases
from medical dataset within user-specified time intervals. The drawback of these methods is that their results will miss
some frequent patterns that do not fulfill the time constraint. To decide if a pattern is frequent, two conditions must be
satisfied: the support of the pattern must be greater than or equal to min_sup, and the time range between itemsets
must lie within the defined time intervals. Therefore, if a pattern fulfills the first condition, which means it is frequent
but does not fulfill the second condition, the algorithm will not report it.
 [7] incorporated the temporal dimension in the sequential pattern by defining temporally annotated sequences (TAS),
and [8] proposed the Trajectory Pattern algorithm (T-pattern) to extract a set of TAS to produce trajectory patterns
with a fixed amount of time to travel between places. The algorithm only worked with one-dimensional data that did
not represent the real cases in real life such as healthcare applications. Also, the time between events in trajectory
patterns is strict, which does not consider different cases of traveling between locations such as transportation types.
[21] relaxed the travel time to be a realistic range for traveling time. Nevertheless, the algorithm still cannot deal with
multidimensional data because it is dealing only with locations in trajectory data. Also, all the previous techniques did
not consider all possible occurrences of a pattern in an individual sequence in the database, which means the temporal
relations are calculated based on the first occurrence of a pattern. The issue of calculating the time-intervals of the
first occurrence of a pattern and ignore other occurrences was address in [15]. However, this approach is beneficial
for a limited number of applications. For example, if a developer wants to evaluate the ease of use a navigation system,
the time of moving from A to B is tested when the users visit those location for the first time. In contrast, in other
applications such the healthcare, which is mentioned above, we must consider all possible occurrences to provide an
accurate time-intervals. To the best of our knowledge, there is no existing algorithm that can find the complete set of
timed sequential patterns in which each pattern represents the transition time between successive itemsets in a pattern
and consider all possible occurrences.

4 The Proposed Algorithm: Minits-AllOcc

To discover timed sequential patterns, we propose a timed sequential pattern mining algorithm called Minits-AllOcc.
We first describe the occurrence tree, which is the core data structure of the algorithm, in Section 4.1. Then, in Section
4.2 and 4.3, we introduce an overview of Minits-AllOcc and how it works in detail. In Section 4.4, we propose some
enhancements to improve the efficiency of the algorithm’s performance.
4.1 Occurrence Tree (O-Tree)
The occurrence tree O-tree is a data structure used to represent the different possible occurrences of a pattern in a
timed sequence in TSDB. This tree is the seed of the algorithm because it helps to generate timed sequence patterns
without scanning the timed sequence database many times. The O-tree has two types of nodes: root node, which
contains a timed sequence ID, and regular nodes. A regular node has the following information (1) the event ID eID
and (2) its timestamp eID.t. The edge between two regular nodes represents the difference Δ between the timestamps
associated with the two nodes. For example, sequence <{a}> appears twice in TS3, thus, its O-tree in Fig. 3 has two
nodes connected to the root. However, sequence <{a} {a}>appears once in TS3 that has two nodes too, but one is
connected to the root and the other one is connected to a regular node via an edge Δ, which is 19-2=17. Since each

sequence has an O-tree for each timed sequence in TSDB that contained it, the sequence will have a collection of O-
trees that identify its occurrence in the whole TSDB. Thus, we give the following definition:
Definition 4. Given a sequence A and timed sequence database TSDB, A- forest is a collection of all O-trees
that identify all possible occurrences of the sequence A in TSDB. Fig 5. Demonstrates the forests of four sequences
<{a}>,<{b}>,<{a}[9,20]{b}>, and <{a,b}>. Each forest is surrounded by dotted rectangle, which has group of O-
trees that indicates all time-occurrences of a sequence in TSDB.

4.2 Overview
The main goal of Minits-AllOcc is to find the complete set of the timed sequential patterns that satisfy the min_sup
threshold condition from a given TSDB. To achieve this goal, Minits-AllOcc utilizes the forests to store all required
information from timed sequences in TSDB. The following steps are performed: (1) Scan TSDB to build a Ij-forest
for each distinct item Ij. (2) Find frequent items by counting the number of O-trees in each forest, compare it against
the min_sup threshold, and remove the infrequent items. (3) Merge all O-trees that have the same root from different
forests to build a new forest for a candidate sequence. It should be mentioned that there are two different relations
between itemsets considered while merging step: event-relation and sequence-relation which are defined as:
Definition 5. Given two items X and Y, it is said X and Y have an Event-relation e-relation between them denoted
as <{X,Y}> if X and Y occur in the same event.
Definition 6. Given two items X and Y, it is said X and Y have a Sequence-relation s-relation between them denoted
as <{X} {Y}> if X and Y occur in two different events and the event of X occurs before the event of Y.
(4) Find the timed sequential patterns among candidate sequences by counting the number of O-trees in each forest,
compare it against the min_sup threshold, and ignore the infrequent sequences. By doing step 4, Minits-AllOcc avoids
scanning TSDB for each candidate to calculate the support. (5) Compute the temporal relation of the suffix, the new
appending part to the pattern, and update the temporal relation of the prefix, the previous part of the pattern. (6) Repeat
steps 3, 4, and 5 until the algorithm cannot identify any new timed sequential pattern. Minits-All Occ's pseudocode is
presented in Fig. 4.
4.3 The Proposed Algorithm: Minits-AllOcc
In this section, we describe the above steps in detail using the running example shown in Fig. 1. At first, the algorithm
starts reading the TSDB row by row and builds the associated O-tree for each distinct item until all forests are completed
(line 1). As shown in Fig.5 for instance ,after the algorithm finishes scanning TSDB, <{a}>-forest has three O-trees
because sequence <{a}> appears in three timed sequences TS1, TS3, and TS4. Then, the algorithm excludes the
infrequent sequences by calculating their supports using the number of O-trees in each forest. The two sequences <{e}>
and <{f}> are not frequent because their forests have only one tree, which means they appear in one TS, therefore, their
support is 25%. The following is the set of 1-timed sequential patterns = <{a},{b},{d},{g}> (line 2). The third step is
generating candidates by merging the O-trees of all 1-timed sequential patterns, so the algorithm calls function find-
TSPs (line 3). The mechanism of merging is the follows: if the relation is s-relation, the appended node must have an
event ID ei that is greater than the parent(line 11-14). Then, the edge holds the difference between the timestamps of
the parent and its child(line 15). In contrast, if the relation is e-relation, the appended node must have the same event
ID ei of its parent(line 23-26). For instance, the forest of the two candidates <{a}[]{b}>, which represents the s-relation,
and <{a,b}>, which represents the e-relation, is shown in Fig. 5. The first <{a}[]{b}>-forest has two O-trees that are
generated by combining the <{a}>-forest and <{b}> -forest. Even though both forests have an O-tree that has a root
TS1, the O-tree of <{b}> does not contain a node that has an event ID greater than e1, thus, it was removed from the
<{a}[]{b}>-forest. In contrast, the node that has e2 from <{b}>-forest is attached to the node that has e1 from <{a}>-

Fig. 3. An O-tree for sequences <{a}> and <{a}{a}> in TS3

forest, and the Δ is calculated between those nodes, which is 19-2 =17. However, the node that has e2 from <{a}>-forest
does not connect to any node. Since the algorithm is looking for all possible occurrences, the node in TS4 that has e1 is
connected to the two nodes, which has event ID e2 and e4, from <{b}> O-tree and each link carries the difference
between the timestamps of the two connected nodes. Because in this example we consider the temporal relations as a
range of [min, max], the algorithm chooses the minimum and maximum values among all O-trees in <{a}[]{b}>-forest,
which is [9,20]. The second <{a,b}>-forest, has two O-trees that are generated by combining the <{a}>-forest and
<{b}> -forest. The difference between the technique of merging the trees from the previous case and this one is the
condition of appending nodes. Since this is an e-relation, all added nodes must have the same event ID ei as their parents.
Also, the Δ is always 0 because the nodes have the same timestamps. Both patterns <{a}[9,20]{b}> and <{a,b}> are
considered to be timed sequential patterns and they are added to TSP set because their supports are 50% (line18-20, 30-
31). The supports are calculated as following: # O-trees in the forest / #timed sequences in TSDB*100,(2/4)*100=50%.
The algorithm now repeats the same steps, by calling function find-TSPs recursively in line 21 and 32, to extend the
pattern by merging O-trees, extracting TSPs, and computing temporal relations until no more TSPs can be found. As
shown in Fig. 6, pattern <{a} [9,17] {b} [1,6] {d }> is a result of merging between <{a} [9,20] {b}>-forest and <{d}>-
forest. The forest displays only the O-trees that represent the pattern, then, the time between the prefix <{a} [] {b}>
and suffix <{d}> is calculated as defined before (the range). Also, it should emphasize that the time of prefix <{a} []
{b}> is updated based on the current forest. Before, it was <{a} [9,20] {b}> but now it is <{a} [9,17] {b} ...>. Again,
the <{a} [9,17] {b} [1,6] {d}> is TSPs because its support is 50%. Minits-AllOcc continues repeating the steps until

Fig. 4. Pseudo-code of the Minits-AllOcc Algorithm

the complete set of TSPs is discovered. The reader can verify that the TSPs in this example is = {<{a} [9,20] {b}>,
<{a} [6,23] {d}>, <{b} [1,7] {d}>, <{a,b} [6,7] {d}>, <{a} [9,17] {b} [1,6] {d }>}.

4.4 The Proposed Enhancement
In this section, we describe some effective mechanisms that help to improve the efficiency of Minits-AllOcc.
1. Pruning the Forests
The idea of this technique is to refine a sequence's forest after merging the O-trees. So, when those O-trees are used
in the next step for generating candidates, they carry only the necessary information and therefore save space by
removing some nodes and save time by avoiding traversing needless branches in trees. Any branch in an O-tree that
does not have a new appended node will be removed after the merging step is executed. Fig. 7 represents the idea by
showing the deleted branch of O-trees using the cross symbol. For example, the O-tree that has TS3 root is a result of
merging TS3 O-tree from <{a}> and <{b}>-forests. Since there is no appended node to the right branch of <{a}>-
forest, this node is removed from <{a} [9,20]{b}>-forest. Those branches do not exist anymore in the O-trees.

2. Using frequency matrix
With this technique, we avoid generating unnecessary candidates, which reduces the number of forests. For example,
the algorithm uses the 1-sequence-forests to generate 2-sequence candidates, then keeps frequent patterns and removes
infrequent ones. Since all required information is already available in the forest, we build a frequency matrix for each
sequence to indicate the candidates that are frequent. For example, the frequency matrix of <{a}> pattern is shown in
Fig.8. The two different relations: event and sequence (the rows) and all 1-timed sequential patterns that can be
combined with {a} (the columns) are considered. The cells under <{b}> column represent the frequency of the two
relations between <{a}> and <{b}>. This frequency is calculated from the forests of those patterns as shown in Fig.7.
For s-relation, there are two O-trees (TS3 and TS4) in which the <{a}> and <{b}> occur at the different timestamps

Fig. 5. Merging O-trees of <{a}> and <{b}> to generate

<{a,b}>-forest and <{a}[9,20]{b}>-forest

Fig. 6. Merging <{a}[9,20]{b}>-forest and <{d}> to

generate <{a}[9,17]{b}[1,6] {d}>-forest

Fig. 7. Pruning the original <{a}[9,20]{b}>-forest and

<{a,b}>-forest in Fig. 5

within the same timed sequence. For e-relation, there are two O-trees (TS1 and TS3) in which the <{a}> and <{b}>
occur at the same timestamps within the same timed sequence. From the matrix, we can infer that <{g}> is not frequent
either with s-relation or e-relation, thus, we do not need to build the forest of sequence <{a}[]{g}> or <{a,g}>.

3. Using Multicore CPUs
Another enhancement is using multicore CPUs for implementing Minits-AllOcc, which we call it MMinits-AllOcc.
A queue is created to hold all jobs of the algorithm and as soon as one thread becomes idle, the next job in the queue
is assigned to it. The first mechanism of parallelism is all threads work in parallel when the algorithm recursively
generates the patterns. In the serial version, the algorithm starts with the pattern <{a}> and keeps extending it until no
more patterns can be found that have prefix <{a}>, for example. Then, it starts with the pattern <{b}> and so on. With
the multi-core version, the algorithm works on all patterns <{a}>, <{b}., ..etc at the same time.

5 Performance Analysis

In this section, we describe the environment of experiments and report our evaluation results on the performance of
Minits-AllOcc and MMinits-AllOcc considering the impact of different parameters.

5.1 Experimental Setup

All experiments were performed on a computer with a 2.10 GHz Intel Xeon(R) processor with 64 gigabytes of RAM,
running Ubuntu 18.04.1 LTS CPU with 12 cores. The Minits-AllOcc and MMinits-AllOcc algorithms are implemented
in Java 1.8.

5.2 Datasets and Experimental Parameters

We use real-life and synthetic datasets. The real dataset is T-Drive [13] [14] and the synthetic dataset was generated
by using a tool provided by the SPMF Library [4]. Also, we set several parameters to conduct the experiments on the
dataset. There are two types of parameters: static and dynamic parameters. The values of the static parameters are not
changed in experiments. In contrast, the values of the dynamic parameters are changed from one experiment to
another. In this experiment, we have four dynamic parameters. The first one is the minimum support threshold
(min_sup). It is a user-defined threshold that is applied to find all timed sequential patterns in a timed sequence
database TSDB. The second parameter is the number of timed sequences TS in TSDB (#Seq). The third parameter is
the length of TS in TSDB, which is can also be be represented as the number of events per TS (# Events). The last
parameter is the number of items in each event (#items). It should be mentioned the timestamp is a fixed attribute in
all events. When it said the number of items per event is 3, for instance, it means three items plus the timestamp. We
study the impacts of all four parameters shown in Table 1 on the synthetic dataset. However, for the T-Drive dataset,
the only valid dynamic parameter is the min-sup. Thus, all other three parameters are considered static. Now, we
explain the range of the parameters and their default values of this analysis as they are summarized in Tables 1. When
an experiment was conducted, we chose various values of one parameter within its range and assigned the default
value to the other parameters. The min-sup parameter has a range from 20% to 80% with the default value = 50%,
which is the median of the interval. The range of number of timed sequences parameter is chosen to be from 1 to
100,000 and its median value of 50,000 to be the default value. For the number of events per sequence, the default
value is 25 because the range is from 5 to 50. The number of items in the last parameter range has been chosen to be
from 1 to 10 items per event, thus, the default value is 5, which is the median.

5.3 Competing Algorithms

Since no existing algorithm can discover the timed sequential patterns and consider All-time Occurrences, we cannot
compare Minits-AllOcc against any technique. We will compare it against MMinits-AllOcc.

5.4 Evaluation Metrics

The evaluation metrics include two measurements: (1) Execution Time (ET) of algorithms (Minits-AllOcc, and
MMintis-AllOcc) (2) Number of Patterns (#patterns) that are generated by these algorithms.

Fig. 8. Frequency matrix for <{a}>

5.5 Experimental Results

In this section, we present the performance of the two algorithms, Minits-AllOcc and MMinits-AllOcc, in terms of
execution time (ET) and the number of discovered patterns (#patterns) for the real and synthetic datasets.
1. Accuracy
In order to validate that Minits-AllOcc always gives the same sequential patterns in terms of the numbers and contents
excluding the temporal relation as those produced by PrefixSpan [17]. First, all temporal relations were removed from
the patterns that were generated by Minits-AllOcc. Then, these patterns were compared to the patterns that were
generated by PrefixSpan to make sure that each sequential pattern generated by PrefixSpan has a matching one
generated by Minits-AllOcc and MMinits-AllOcc. For example, a sequential pattern X= < {a} {b} {a,b}> was
generated by PrefixSpan and a timed sequential pattern Y= < {a} [2,5] {b} [3,7] {a,b}>, was generated by Minits-
AllOcc and MMinits-AllOcc. We took away the temporal relations from Y and compared it with the pattern X. In case
the order of at least one itemset was different, the pattern X was not matching the pattern Y. For instance, Z= <{b}
[2,5]{a} [3,7] {b,a}> was not matching pattern X because the item <{b}> occurred before <{a}>. However, within
the last itemset {a,b} the order does not matter because all the items appear at the same timestamp. At the end of this
experiment, we found that the two algorithms: Minits-AllOcc and MMinits-AllOcc discovered the exact patterns that
were produced by PrefixSpan. In other words, all algorithms produced the complete and correct set of sequential
patterns.
2. Execution Time
The execution time was recorded starting from the moment that a dataset had been read to the moment that an
algorithm produced the timed sequential patterns. Table 2 shows the average performance of the two algorithms:
Minits-AllOcc and MMinits-AllOcc. The execution time (ET) of MMinits-AllOcc decreases by about 50% and 60%
for T-Drive and synthetic datasets respectively compared to the execution time of Minits-AllOcc.

3. Impact of Minimum Support
In these set of experiments, we compared execution time (ET) and the number of patterns (#patterns) for different
values of minimum support threshold (min_sup) for both datasets: T-Drive and synthetic. From Fig. 9 (a) and Fig. 10
(a), we can see that when the minimum support increased, the execution time of all algorithms decreased. The reason
is the algorithms generate fewer timed sequential patterns when the min-sup is high because the number of candidate
sequences that satisfy the min-sup condition became fewer. With a large amount of data and a huge number of
discovered timed sequential patterns, MMinits-AllOcc outperformed Minits-AllOcc as shown in Fig. 9(a) and Fig.
10(a). Therefore, using multicore CPUs is more useful when the size of the timed sequence database is huge.
The multicore CPU version was also efficient when we have low min-sup. As we observed from Fig. 10 (b), the ET
of both Minits-AllOcc and MMinits-AllOcc were very close when the min-sup is greater than 60%. The reason is the
number of candidate sequences, and thus the number of timed sequential patterns, was getting smaller, so most of the
threads were idle. Therefore, MMinits-AllOcc did not need to use all the available threads and behaved almost like a
single-core version Minits-AllOcc. Another observation was based on the number of timed sequential patterns that
were generated by these algorithms. All algorithms discovered the same number of patterns; thus, their curves were
overlapping in Fig. 9(b),10(b),10(d),11(b), and 11(d). When the min-sup increases, the number of timed sequential
patterns decreased because the patterns that satisfy the min-sup condition became fewer. By increasing the threshold
min_sup, the percentage of timed sequences in the timed sequence database that was supposed to contain a candidate
sequence decreased as shown in Fig. 9(b) and Fig. 10(b).
4. Impact of the Number of Sequences in the Database
In these set of experiments, we compared the execution time (ET) and the number of discovered timed sequential
patterns (#patterns) for different number of the timed sequences (#Seq). From Fig. 10(c), we can see that when the
number of timed sequences increased; the execution times of all algorithms increased. The reason is that the algorithms
needed more time to check the extra timed sequences that were added in the timed sequence database to decide if they
contained a timed sequential pattern or not. We observed that number of timed sequential patterns, which were

Table 1. Parameter list for the synthetic dataset

Table 2. Average Execution Time ET and #patterns

generated by these algorithms, increased when the number of timed sequences as shown in Fig. 10(d), the number of
timed sequential patterns that were discovered by the algorithms also increased because of the possibility of finding
more patterns in the new timed sequences that satisfy the min-sup (50% as the default value) condition also increased.
By increasing the number of timed sequences in the database, the algorithms needed to check if some new patterns
can occur and did not exist in the old timed sequences. Next, it checked their support against the threshold (min-sup).
It is possible the support of some old patterns in the database before new sequences were added did not satisfy the
min-sup condition because they were not supported by a sufficient number of timed sequences but with a new timed
sequence database, these patterns became to be timed sequential pattern. Thus, the number of newly discovered timed
sequential patterns would increase. For example, if a database had 1000 sequences in the synthetic dataset, the number
of timed sequential patterns was 3720, while the number of timed sequential patterns was 3780 when the timed
sequence database had 10,000 timed sequences.

5. Impact of the Number of Events per Sequence
Fig. 11(a) and (b) show the impact of the number of events (#Events) per timed sequence on the execution time (ET)
and the number of discovered sequential patterns (#patterns). There was a strong relationship between the length of a
timed sequence and the number of discovered patterns. Increasing the length of timed sequences (#Events) drove
discovering more patterns because the algorithm can extend a pattern up to the length of the timed sequence. In other
words, if we have a timed sequence that contains n events, we can discover a set of timed sequential patterns that their
length varies from 1 to n. Subsequently, the required time of discovering those patterns would be increased.

6. Impact of the Number of Items per Event
In the last experiment, we increased the number of unique items in each event. That means may new items appear in
timed sequence database TSDB that lead to detecting more new timed sequential patterns. When the number of items
increases, the number of possible combinations between those items to generate candidates also increases. Thus, the
number of patterns
increased, as shown in Fig. 11(d). Growing the length of events led to the growth of the number of candidates, which
means the algorithms needed more time, as shown in Fig. 11(c), to check those events, generate candidates, and
determine if they were timed sequential patterns and reported the temporal relations.

6 Conclusion and Future Work
In this paper, we presented an algorithm, called Minits-AllOcc, to discover timed sequential patterns TSP, which are
sequential patterns that include the transition times between all possible occurrences in events across the timed
sequence database TSDB. We implemented two versions of Minits-AllOcc: (1) Minits-AllOcc using single-core

Fig. 11. Parameter study for synthetic dataset

Fig. 9. Parameter study for T-Drive dataset

Fig. 10. Parameter study for synthetic dataset

CPUs, and (2) MMinits-AllOcc on multi-core CPUs. We conducted experiments to compare the accuracy and
execution time of the algorithms. The experiments showed that the algorithms produced accurate patterns but
MMinits-AllOcc outperformed Minits-AllOcc when the dataset is large in terms of the size of TSDB, length of timed
sequences, or the number of items per event. For future work, we plan to improve Minits-AllOcc to be able to account
for both very long timed sequences and Dynamic Timed Sequence Database DTSDB, such that the algorithm will be
able to mine TSP without re-executing everything from scratch.

References
1. Agrawal, R., Srikant, R. Mining sequential patterns. In: Proceedings of the 11th IEEE International Conference, pp. 3-14,

IEEE, Taiwan (1995).
2. AlZahrani, M. Y., & Mazarbhuiya, F. A. (2019). Discovering Constraint-based Sequential Patterns from Medical Datasets.

International Journal of Recent Technology and Engineering (IJRTE), ISSN, 2277-3878.
3. Chen, Y. L., Chiang, M. C., & Ko, M. T. Discovering time-interval sequential patterns in sequence databases. Expert

Systems with Applications, Vol.25, No.3, pp.343-354, (2003).
4. Fournier-Viger, P., Lin, C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., Lam, H. T. (2016). The SPMF Open-

Source Data Mining Library Version 2. Proc. 19th European Conference on Principles of Data Mining and Knowledge
Discovery (PKDD 2016) Part III, Springer LNCS 9853, Â pp. 36-40.

5. Fournier-Viger, P., Lin, J. C. W., Kiran, R. U., Koh, Y. S., & Thomas, R. A survey of sequential pattern mining. In Data
Science and Pattern Recognition, pp. 54-77, (2017).

6. Gan, W., Lin, J. C. W., Fournier-Viger, P., Chao, H. C., & Yu, P. S. (2019). A survey of parallel sequential pattern mining.
ACM Transactions on Knowledge Discovery from Data (TKDD), 13(3), 1-34.

7. Giannotti, F., Nanni, M., & Pedreschi, D. Efficient mining of temporally annotated sequences. In Proceedings of the 2006
SIAM International Conference on Data Mining, pp. 348-359, (2006).

8. Giannotti, F., Nanni, M., Pinelli, F., & Pedreschi, D. Trajectory pattern mining. In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 330-339, (2007).

9. Han, Jiawei, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar Dayal, and Mei-Chun Hsu. "FreeSpan: frequent
pattern-projected sequential pattern mining." In Proceedings of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 355-359, (2000).

10. Hu, Y. H., Huang, T. C. K., Yang, H. R., & Chen, Y. L. (2009). On mining multi-time-interval sequential patterns. Data &
Knowledge Engineering, 68(10), 1112-1127.

11. Huynh, B., Vo, B., & Snasel, V. (2017). An efficient method for mining frequent sequential patterns using multi-core
processors. Applied Intelligence, 46(3), 703-716.

12. Jay, N., Herengt, G., Albuisson, E., Kohler, F., & Napoli, A. (2004). Sequential pattern mining and classification of patient
path. MEDINFO, 1667.

13. Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun, and Yan Huang. T-drive: driving
directions based on taxi trajectories. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in
Geographic Information Systems, GIS ’10, pages 99-108, New York, NY, USA,2010. ACM.

14. Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. Driving with knowledge from the physical world. In The 17th
ACM SIGKDD international conference on Knowledge Discovery and Data mining, KDD’11, New York, NY, USA,
2011. ACM

15. Karsoum, S., Gruenwald, L., Barrus, C., & Leal, E. (2019, December). Using Timed Sequential Patterns in the
Transportation Industry. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 3573-3582). IEEE.

16. Li, Huanhuan, Xiaofeng Zhou, and Chaojun Pan. "Study on GSP algorithm based on Hadoop." In Electronics Information
and Emergency Communication (ICEIEC),5th IEEE International Conference, pp. 321-324, (2015).

17. Pei, Jian, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar Dayal, and Mei-Chun Hsu.
"Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth." In icccn, p. 0215, (2001).

18. Pramono, Y. W. T. (2014, August). Anomaly-based intrusion detection and prevention system on website usage using rule-
growth sequential pattern analysis: Case study: Statistics of Indonesia (bps) website. In 2014 International Conference of
Advanced Informatics: Concept, Theory and Application (ICAICTA) (pp. 203-208). IEEE.

19. Srikant, R., Agrawal, R. Mining sequential patterns: Generalizations and performance improvements. In: International
Conference on Extending Database Technology, pp.1-17, Springer, Berlin, Heidelberg (1996).

20. Wei, Yong-qing, Dong Liu, and Lin-shan Duan. Distributed PrefixSpan algorithm based on MapReduce. In IEEE
Information Technology in Medicine and Education (ITME), International Symposium on, vol. 2, pp. 901-904, (2012).

21. Yang, H., Gruenwald, L., & Boulanger, M. A novel real-time framework for extracting patterns from trajectory data
streams. In Proceedings of the 4th ACM SIGSPATIAL International Workshop on GeoStreaming, pp. 26-32, (2013).

22. Zaki, Mohammed J. SPADE: An efficient algorithm for mining frequent sequences. Machine learning 42, no. 1-2, (2001).

12

